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Abstract: Inverse lithography technology (ILT) is intended to achieve optimal mask design to 

print a lithography target for a given lithography process. Full chip implementation of rigorous 

inverse lithography remains a challenging task because of enormous computational resource 

requirements and long computational time. To achieve full chip ILT solution, attempts have been 

made by using machine learning techniques based on deep convolution neural network (DCNN). 

The reported input for such DCNN is the rasterized images of the lithography target; such pure 

geometrical input requires DCNN to possess considerable number of layers to learn the optical 

properties of the mask, the nonlinear imaging process, and the rigorous ILT algorithm as well. To 

alleviate the difficulties, we have proposed the physics based optimal feature vector design for 

machine learning ILT in our early report. Although physics based feature vector followed by feed-

forward neural network can provide the solution to machine learning ILT, the feature vector is 

long and it can consume considerable amount of memory resource in practical implementation. To 

improve the resource efficiency, we proposed a hybrid approach in this study by combining first 

few physics based feature maps with a specially designed DCNN structure to learn the rigorous 

ILT algorithm. Our results show that this approach can make machine learning ILT easy, fast and 

more accurate. 

Keywords: Optimal feature maps, inverse lithography technology (ILT), deep convolution neural 

network (DCNN). 
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1. Introduction 

Semiconductor industry has been progressed 

continuously from node to node to meet the ever 

increasing demand on chip performance 

improvement, power consumption reduction and cost 

reduction. The technology advancement has been 

enabled by various innovations in relevant fields, 

including new lithography exposure tools, new 

materials, new device architectures and new process 

technologies. The enormous challenges in the 

building of EUV lithography infrastructure has not 

slowed down the industry in the past, instead, the 

gap left by the difference in hardware resolution 

capability between immersion exposure tools and 

EUV exposure tools had created opportunities for the 

development and adoption of computational 

lithography technologies. We have witnessed the 

adoption of sub-resolution assist features (SRAF), 

multiple patterning technologies (MPT), and the 

source-mask co-optimization (SMO). The 

computational lithography technologies mentioned 

above have become the standard practice in 

developing integrated lithography patterning 

solutions for advanced semiconductor technology 

nodes. Source-mask co-optimization realizes the 

optimal lithography process for a selected set of 

patterns derived from a given set of pattern design 

rules. With the illumination source obtained from 

SMO, the lithograph process window of a chip for a 

design layer depends mainly on the quality of optical 

proximity correction (OPC) solution, which relies on 

the placement quality of SRAFs to a very large 

extent. The placement of SRAFs has gone through 

several evolutions, from simple rule based placement 

to model derived template placement, to inverse 

lithography technology (ILT) produced placement in 

hotspots fixing loop. In theory, inverse lithography 

has provided solid mathematical framework for 

achieving optimal mask solution. Although rigorous 

inverse lithography algorithms do exist in various 

forms [1, 2], full chip rigorous inverse lithography 

solution remains a challenging task in practice.  

Realization of full chip inverse lithography is not an 

academic interest only; it has enormous practical 

significance for advanced lithography process for 

tight pattern edge placement error control, in 

particular, for EUV lithography process for which 

stochastic effect induced edge placement error is 

significant. The effective way to reduce EUV 
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lithography process stochastic effect is to improve 

image contrast through optimal assist feature 

placement. 

The research and development in ILT has 

achieved fruitful progress in two directions recently. 

In one direction, a breakthrough has been reported in 

full chip rigorous mask 3D simulations through 

intelligent and efficient algorithm that gains 

computational acceleration from arrays of GPUs [3, 4]. 

In another direction, machine learning ILT based on 

deep convolution neural network (DCNN) has also 

been explored with success [5, 6]. Machine learning 

ILT is not aimed at replacing rigorous ILT entirely, 

instead, machine learning ILT is intended to offer 

sufficiently good initial ILT solution for rigorous ILT 

engine to take over to reach convergence with 

extremely fast computational speed.  In essence, 

machine learning ILT solution can be viewed as 

constructing a nonlinear mapping function between 

the lithography target design and the rigorous ILT 

solution. It is not a simple point-to-point mapping; it 

is a function-to-point mapping. Machine learning 

ILT is made up of three major parts: (1) feature 

vector design; (2) neural network design, (3) 

machine learning ILT model training strategy. Feed-

forward multilayer neural network architecture has 

been proven to possess the capability of constructing 

function-to-point mapping [7,8]; while convolution 

network has the capability of exploring spatial 

correlation hierarchically and extracting feature 

vector representation automatically through training. 

In semiconductor industry, DCNN has been applied 

to hot spot detection as a classification problem [9-12] 

to ILT solution as a regression problem [5, 6]. However, 

previous implementation of DCNN for ILT uses 

rasterized lithography target design as input, with 

such pure geometrical image as input, the feature 

vectors extracted from DCNN lack of intuitive 

physical interpretation, they cannot address the 

critical questions regarding feature vector design, i.e., 

the feature vector resolution, the feature vector 

sufficiency, and the feature vector efficiency. The 

optimality of the feature vector extracted from such 

DCNN implementation is much more sensitive to the 

training samples selected.   

In our previous reports, we have presented our 

machine learning OPC and machine learning ILT 

results based on physically derived feature vector 

design followed by a shallow (5 to 6 layers) feed-

forward neural network [13, 14]. For machine learning 

ILT with our proposed physically derived feature 

vector design, the feature vector length needs to be 

around 140 to achieve satisfactory model accuracy, 

which will demand considerable memory resource in 

practical implementation. To lift the memory 

resource burden while still taking advantage of 

physics based feature vector design, we propose a 

hybrid approach in this study, which uses first few 

physics based feature maps as input, followed by a 

specially designed DCNN. The specially designed 

DCNN possesses the desired properties of being 

wide receptive field and of being able to preserve 

high resolution. It turns out that this hybrid approach 

can make machine learning ILT easy, fast and more 

accurate. 

2. Feature Vector Design for Machine 

Learning ILT 

Machine learning based ILT can be generally 

stated as: For a given ADI target layer and a fixed 

optimal mask generation mechanism (illumination 

source + mask type + rigorous ILT algorithm), there 

should exist a unique mapping function between ADI 

target data and ILT data, as shown in Figure 1. 

 

 

 
Figure 1. Mapping from ADI target to ILT image. 

 

Mathematically, it can be expressed as: 

ILT function (x, y) = F (ADI target patterns (x, y)) 

     (1) 

As we emphasized earlier, it is not a point-to-

point mapping, it is a function-to-point mapping. The 

value of ILT solution at point (x, y) not only depends 

on the value of ADI target data at point (x, y), but 

also depends on all values of ADI target data around 

the point (x, y) within an influence range. Before we 

proceed to address the question of how to design 

feature vector to describe the neighboring 

environment around a point (x, y), we should first 

ask the question: how many degrees of freedom does 

the neighboring environment around a point (x, y) 

have? The theoretical answer is: the degree of 

freedom of the neighboring environment around a 

point (x, y) is infinite. Therefore, a complete 
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description of the neighboring environment around a 

point (x, y) is impossible. Fortunately, a description 

with infinite resolution is often not required 

practically. This is true for machine learning based 

computational lithography, because the imaging 

system used in lithography process does not possess 

infinite resolution. This fact suggests that the number 

of effective degree of freedom of the neighboring 

environment around any point (x, y) can be 

considered finite practically. This observation and 

fact is the very foundation of all computational 

lithography. The second question we need to address 

is: what is a feature vector and what desired 

properties a feature vector should have? Essentially, 

a feature vector is a mathematical representation that 

describes the neighboring environment around a 

point (x, y) in a quantitative way. As a measurement 

device, a feature vector must address the following 

important properties, i.e., the measurement 

resolution, the measurement sufficiency 

(completeness), and the measurement efficiency. In 

addition, it is very desirable for a feature vector to 

possess a property such that the mapping function 

from input to output of the neural network model is 

less nonlinear and smooth (differentiable), or even 

monotonic (hopefully). 

 

 
Figure 2. Divide the neighboring environment into cells. 

To elucidate the concept of measurement 

resolution and measurement efficiency of a feature 

vector, we can look at Figure 2. To describe the 

neighboring environment around a point (x, y), we 

can divide the influencing area into small cells. 

Assume the influencing range is 1.0 m each side, 

and the cell size is x nm, then the cell size x 

determines the resolution of the feature vector 

representation, and the total number of cells = 

(21000/x)2 represents the maximum length of the 

feature vector for a complete description with 

resolution x nm. Clearly, the smaller the cell size x, 

the higher the measurement resolution; and the 

higher the resolution of the feature vector 

representation, the longer the feature vector is. To 

serve the machine learning based ILT properly, the 

resolution of the feature vector representation must 

meet a minimum requirement, which is determined 

by lithography process imaging condition, i.e., cell 

size x = k/(NA(1+max)). The k coefficient is 

related to the degree of spatial coherence of the 

illumination, which depends on the effective 

illumination area of the source. A typical cell size for 

high NA immersion lithography process is around 

15nm to 20nm, therefore, the estimated feature 

vector length for a complete description is 

(2000/20)2 = 10000. Of course, such a simple and 

plain encoding scheme for neighboring environment 

lacks of efficiency, because the encoding scheme 

does not explore the characteristics of the 

lithography process, it treats all cells equally and 

independently, it does not explore all symmetry 

properties among all the cells. Intuitively, not every 

cell has the same influence on the point of interest, 

on average, the closer the cell to the point of interest, 

the more important the cell is. As to the sufficiency of 

a feature vector, it is related to the capability of the 

feature vector in describing the neighboring 

environment completely within allowed error bound. 

Simply stated, for any two feature vectors X1, X2, if 

X1= X2, then, the condition |F (X1) - F (X2)|   ( is 

the allowed error bound related to data noise) 

CANNOT be violated.  

There have been several reported ways of 

designing feature vectors for computational 

lithography. Incremental concentric square sampling 
[15], incremental concentric circle area sampling [16], 

polar Fourier transform [17] have all been proposed to 

be used for constructing feature vectors for 

computational lithography. These feature vector 

designs do not address the optimality of the designed 

feature vector, and most of them are pure 

geometrical based feature vectors, except the design 

based on polar Fourier transform. Feature vectors 

based on “geometrical rulers” have intrinsic 

deficiency in machine learning computational 

lithography; this is particularly true for inverse 

lithography which grows assist features out of blank 

areas in mask space. As it is known, rule based assist 

feature insertion based on geometrical measurement 

has abrupt change points in the rule table. Therefore, 

machine learning inverse lithography using 

“geometrical ruler” based feature vector as neural 

network input must possess more complicated 

network structure to learn those abrupt change points 

in order to map the feature vector into correct 
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response function domain. Feature vectors derived 

from polar Fourier transform made progress by 

exploring the characteristics of the lithography 

process partially, however, it still fails to fully take 

the imaging process physics into account. Feature 

vector design is essentially an information encoding 

scheme design. For machine learning computational 

lithography, there are three spaces we can use for 

information encoding, the lithography target space, 

which is pure geometrical; the mask space, which 

has geometrical information and optical property 

information; the image space, which contains 

information about design geometries, mask optical 

properties and imaging formation characteristics. 

From an information point of view, information in 

lithography target space is not complete (without 

specifying optical properties of the background and 

the pattern covered areas), if feature vector design is 

in lithography target space, then the subsequent 

DCNN must learn mask optical properties, nonlinear 

imaging formation process and rigorous ILT 

algorithm. Information in mask space is complete 

and of highest resolution. If feature vector design is 

in mask space, then the subsequent DCNN must 

learn nonlinear imaging formation process and 

rigorous ILT algorithm. Information in imaging 

space can be used to recover information in mask 

space fully within the resolution limit defined by 

optical imaging condition. If feature vector design is 

in image space, then the subsequent DCNN only 

need to learn the rigorous ILT algorithm. Between 

mask space and image space, which space is 

narrower in terms of encoding efficiency? In mask 

space, the “function space” is constrained by design 

rules of the layer; while in image space, the 

“function space” is constrained by both design rules 

and imaging conditions. Stated explicitly, all aerial 

images derived from a given imaging condition 

constitute a special class of functions. In other words, 

the “function space” in image space is narrower than 

the “function space” in mask space, and the 

information lost in image space in comparison with 

that in mask space is beyond the optical imaging 

resolution. Therefore, optimal feature vector design 

for computational lithography should be related to 

optimal and efficient representation of aerial images 

of the class at hand.  

Now the question becomes how to represent 

aerial images most efficiently? The aerial image 

function I(x,y) is a band-limited function. While a 

real function with finite bandwidth  can always be 

represented by a set of basis functions of the same 

bandwidth, there still exists the question whether 

there is an optimum set of basis functions among all 

the possible sets of basis functions with bandwidth, 

. By the optimum set of basis functions, it means 

that only the minimum number of the basis functions 

that are needed to approximate any real valued 

function of bandwidth, , for a specified error 

requirement. To seek the optimal representation of 

aerial image function, we can refer to the imaging 

equation of Hopkin’s, which can be decomposed into 

a sum of coherent imaging system for partially 

coherent illumination, as shown in Equation (2) 

below. 

2

1

( , ) i i

i

I x y M


=

=                  (2) 

Where  represents the convolution operation 

between the ith kernel and the mask transmission 

function M. {i} and {i} are the set of 

eigenfunctions and eigenvalues of the transmission 

cross coefficients matrix (TCCs). This optimal 

imaging system decomposition is originally designed 

for fast aerial image calculation under partial 

coherent illumination, and it has been proved that 

this decomposition scheme is the optimal 

decomposition in terms of computational efficiency 

[18]. From an information theory point of view, we 

can interpret it as an optimal and most efficient aerial 

image information encoding scheme. This suggests 

that imaging system kernels {i} captures imaging 

system characteristics fully, and they are a set of 

natural and optimal “optical rulers” for measuring or 

estimating the neighboring environment around a 

point (x, y), because the set of {i} eigenfunctions 

are orthonormal functions. Based on the above 

reasoning, we define {S1, S2, … , SN} as the feature 

vector, with Si being defined as: 

2

iS
i

M=                       (3) 

Then, the machine learning inverse lithography 

problem can be reformulated from Equation (1) to 

Equation (4). 

ILT function(x, y) = F (S1 (x, y), S2 (x, y),…SN (x, y)) 

(4) 

The idea of using imaging eigen signal set {Si} to 

describe aerial image has been used previously for 

OPC model and lithography two-dimensional 

patterns’ quantification [19, 20]. Now we turn to the 

question of how to obtain the approximate function 

F, this is related to neural network design. 
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Figure 3. Feed-forward neural network model. 

 

 

Figure 4. Hybrid approach machine learning inverse lithography model. 

 

3. Machine Learning Based ILT and 

Results 

With feature vectors calculated using Equation 

(3), a general mapping function described by 

Equation (4) can be constructed using a feed-forward 

neural network structure, as suggested by the 

universal approximation theorem 7, 8. The results 

based on this approach have been reported in our 

previous report 14. Figure 3 shows the key elements 

of the approach. 

Since both the input feature vector maps and the 

output (continuous tone mask) are band-limited 

functions, they are smooth and differential functions. 

This property makes the mapping function 

construction easier using feed-forward neural 

networks.  However, we found that the required 

feature vector is still considerably long in size (140 

elements in our study) in order to achieve good 

model. This will impose considerable requirement on 

memory resource in practical applications. To ease 

the memory resource requirement while keeping 

physics based feature vector as input, we have taken 

a hybrid approach in this study. In this hybrid 

approach, we used {S1, S2, S3, S4, S5} five feature 

maps as input into a specially designed deep 

convolution neural network (DCNN). The basic idea 

is to use first few physics based feature maps, which 

are supposed to be able to provide sufficient 

information to represent mask optical properties and 

imaging process characteristics, then the subsequent 

DCNN to develop more deeper and efficient 

representation for ILT modeling and to accomplish 

coordinated regression. This is because both input 

feature maps and the output image (continuous tone 

mask) have certain degree of spatial correlation, i.e., 

neighboring pixels are correlated. To serve machine 

learning inverse lithography purpose, the specially 

designed DCNN structure should possess certain 

desired properties: (1). The wider the receptive field, 

the better, in order to explore the spatial information 

around a point (x, y); (2). The original resolution of 

the image should be preserved; (3). The depth of the 

DCNN should be moderate, so that there will be no 

need to have residual connections in the network 

structure for easy training. Following these design 

guidelines, we replace all pooling layers with bath 

normalization layers, and we use ReLU as the 

activation function. The convolution kernels are all 

3x3 in size, and the stride step size is 1. The design 

of our hybrid approach is shown in Figure 4. 

The training of the neural network model needs 

to include training samples and test samples, and 

they are selected from the periphery areas of a 28nm 

SRAM design via layer. The pattern selection 

strategy is the same as that for OPC model 

calibration and SMO. Total number of images for 

training is 134, and total number of images for 

model test is 48.  We have tried both He 

initialization and orthogonal initialization for 

weights in model training, and we found there is no 

essential difference in terms of the model quality 
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Rigorous ILT vs. ML model                                     Rigorous ILT vs. ML model 

                

Figure 5. Images from rigorous ILT solutions and from machine learning model for training set, model input: 

{S1:S5}. 

 

Rigorous ILT vs. ML model                                 Rigorous ILT vs. ML model 

                

Figure 6. Images from rigorous ILT solutions and from machine learning model for test set, model input: 

{S1:S5}. 

 

from these two different weight initialization 

schemes. The learning rate used is 5x10-5, and Adam 

optimizer is used in training.  

To assess the model quality, we first normalize 

the rigorous inverse lithography solution into [0, 1] 

using a common normalization factor, then we use 

two metrics to quantify the quality of a model. Let O 

denote the normalized rigorous inverse lithography 

solution image, and Ô the neural network model 

predicted image. Then the first metric we used is the 

probability P(|O  –Ô |  ) where  = 0.1 and 0.05, 

and the other metric used is RMSE. For comparison 

purpose, besides using {S1, S2, S3, S4, S5} as DCNN 

input, we also used {Aerial image} and {Aerial 

image + S1:S5} as DCNN input.  The model training 

error statistics and test error statistics are shown in 

Table 1 below. 

The visual comparison between images from 

rigorous ILT solutions and from our machine 

learning model for training set and test set are shown 

in Figure 5 and Figure 6. 

As it can be seen from Table 1, the first five 

feature vector maps (images) {S1:S5} are better 

model input design than aerial image alone. Aerial 

image is the weighted sum of many signals (images) 

from independent imaging formation kernels {i}, as 

expressed in Equation (2). The sum operation makes 

the original information collapse to a certain extent, 

the set of independent feature vector maps (images) 

{S1:S5} preserves the original information better. 
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Table 1. Model training error statistics and verification error statistics 

Model input Error spec. P(|O  –Ô |  ) RMSE (x10-4) 

  Training set Test set Training set Test set 

Aerial images P(|O  –Ô |  0.10) 0.987 0.976 3.5 4.4 

P(|O  –Ô |  0.05) 0.928 0.916 

{S1:S5} P(|O  –Ô |  0.10) 0.999 0.995 1.8 2.6 

P(|O  –Ô |  0.05) 0.989 0.968 

Aerial images 

+ {S1:S5} 
P(|O  –Ô |  0.10) 0.998 0.989 1.9 2.9 

P(|O  –Ô |  0.05) 0.987 0.965   

 

 

With the first five feature vector maps (images) 

{S1:S5} as DCNN input, P(|O – Ô |  0.05) can reach 

96.8%. This is better than the model performance 

using feed-forward neural network with long feature 

vector (feature vector length =140), the feed-forward 

neural network model can only achieve P(|O – Ô |  

0.1) = 99.0% and P(|O – Ô |  0.05) = 87.5%. The 

improved model accuracy of the hybrid approach 

proposed in this study may result from a 

combination of the physics based feature maps, 

which contain information about the image 

formation mechanism, and the power of DCNN, 

which possesses the great capability of further 

exploring spatial information from {S1:S5} and of 

constructing deeper representation most suitable for 

learning rigorous ILT mechanism. 

Besides the greatly improved model accuracy in 

comparison with the feed-forward model, the speed 

enhancement relative to rigorous ILT is also 

significant. With 4 CPUs (Intel Xeon E7-8855-V4, 

2.1 GHz, each CPU has 14 cores), it takes 12.1 

seconds on average for a 20mx20m patch. In 

comparison with rigorous algorithm (assume 100 

iterations for reaching convergence), the estimated 

speed gain factor is about 25 or more. By running the 

model on a single GPU (Nvidia telsa M60), 

additional speed enhancement by a factor of 20 can 

be achieved. 

4. Conclusion 

Inverse lithography technologies can 

theoretically provide the ultimate optimal mask 

solutions once the lithography process imaging 

condition is fixed. However, its full chip 

implementation has been in stagnation for a long 

time due to its lack of sufficient speed using rigorous 

algorithms.  A hybrid approach by combining 

machine learning inverse lithography technology 

with faster rigorous ILT algorithms has paved the 

way for its full chip implementation. Due to high 

accuracy requirement, machine learning inverse 

lithography is not intended to provide the final ILT 

solution entirely; rather, it provides a sufficiently 

good initial solution for a rigorous engine to take 

over and to achieve final converged solution with 

very few iterations. In our proposed machine 

learning inverse lithography method, we use 

information in image space directly instead of 

information in design geometrical space as model 

input to lift the burden for the model to learn very 

non-linear imaging physical process. We also 

employ a specially designed DCNN that can both 

develop more efficient representation for machine 

learning ILT from imaging space information and do 

coordinated regression.  The new innovative method 

has made machine learning ILT easy, fast and more 

accurate. 
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